SESIÓN BIBLIOGRÁFICA

Víctor Barreales Rodríguez.

Medicina Interna.

05 septiembre 2025.

CagriSema (Cagrilintida + Semaglutida) en Diabetes tipo 2

ORIGINAL ARTICLE

Cagrilintide–Semaglutide in Adults with Overweight or Obesity and Type 2 Diabetes

Melanie J. Davies, M.D., 1,2 Harpreet S. Bajaj, M.D.,3 Christa Broholm, Ph.D.,4 Astrid Eliasen, M.D., Ph.D.,4 W. Timothy Garvey, M.D.,5 Carel W. le Roux, F.R.C.P.,6 Ildiko Lingvay, M.D.,7,8 Christian Bøge Lyndgaard, Ph.D.,4 Julio Rosenstock, M.D.,9 and Sue D. Pedersen, M.D.,10 for the REDEFINE 2 Study Group*

1. Contexto y justificación

- La obesidad es una enfermedad crónica, altamente prevalente (>90% DM tipo 2).
- Los GLP-1 agonistas (ej. semaglutida) han transformado el tratamiento.
- Cagrilintida: análogo de amilina de acción prolongada.
- Combinación (CagriSema): sinergia en mecanismos de saciedad.

2. Diseño del estudio

- Ensayo clínico fase 3, multicéntrico (12 países), doble ciego, 68 semanas.
- n=1206 pacientes, IMC ≥ 27, HbA1c 7-10% (tratamiento previo no más de 3 ADOs)
- CagriSema vs placebo (3:1; 904:302), dosis ascendente hasta 2,4mg semanal.
- Endpoint Primario: % pérdida de peso, % pacientes >5% pérdida de peso (semana 68).
- Secundarios: % pacientes con pérdida >20%, cambios en circunferencia abdominal, HbA1c

	Cagrilintide–Semaglutide	Placebo	
Characteristic	(N=904)	(N = 302)	
Age — yr	55.9±11.8	56.5±10.7	
Female sex — no. (%)	429 (47.5)	140 (46.4)	
Race or ethnic group — no. (%)†			
White	597 (66.0)	204 (67.5)	
Asian	262 (29.0)	84 (27.8)	
Black	33 (3.7)	10 (3.3)	
Other::	12 (1.3)	4 (1.3)	
Body weight — kg	101.9±22.6	103.3±23.5	
Body-mass index	36.1±6.7	36.4±7.1	
Waist circumference — cm	115.6±14.7	116.4±15.2	
Glycated hemoglobin level — %	8.0±0.8	8.0±0.8	
Fasting plasma glucose level — mmol/liter	9.3±2.4	9.5±2.8	
Blood pressure — mm Hg			
Systolic	130.2±14.0	130.2±13.8	
Diastolic	80.4±9.6	80.4±9.3	
Estimated glomerular filtration rate — ml/min/ per 1.73 m²	94.2±19.3	93.4±17.2	
Duration of diabetes — yr	8.5±6.3	8.7±5.9	
Oral glucose-lowering medication — no. (%)			
Metformin	773 (85.5)	263 (87.1)	
SGLT2 inhibitor	305 (33.7)	98 (32.5)	
Sulfonylurea	238 (26.3)	87 (28.8)	
Thiazolidinedione	41 (4.5)	15 (5.0)	
None	64 (7.1)	18 (6.0)	
Physical function			
IWQOL-Lite-CT score∫	59.0±24.3	59.7±24.0	
SF-36v2 score¶	44.8±9.8	44.6±9.6	

3. Resultados.

Table 2. Primary and Confirmatory Secondary End Points.*				
End Point	Cagrilintide– Semaglutide (N=904)	Placebo (N=302)	Treatment Difference (95% CI)	P Value
Primary end points				
Percent change in body weight	-13.7	-3.4	–10.4 (–11.2 to –9.5)	<0.001
Patients with body-weight reduction of ≥5% — %	83.6	30.8	52.8 (46.7 to 58.9)	<0.001
Confirmatory secondary end points				
Patients with body-weight reduction of ≥20% — %	22.9	0.5	22.4 (19.5 to 25.3)	<0.001
Percent change in body weight from baseline to week 20	-10.1	-2.3	-7.8 (-8.3 to -7.3)	<0.001
Change in waist circumference — cm	-11.9	-3.6	-8.3 (-9.3 to -7.3)	< 0.001
Change in glycated hemoglobin level — per- centage points	-1.8	-0.4	-1.4 (-1.6 to -1.2)	<0.001
Change in systolic blood pressure — mm Hg	-6.5	-2.4	-4.1 (-6.0 to -2.1)	< 0.001
Change in IWQOL-Lite-CT physical-function score				
All patients	16.1	10.4	5.8 (3.2 to 8.4)	< 0.001
Patients with poor physical function at baseline†	21.8	12.0	9.8 (2.1 to 17.6)	0.01
Change in SF-36v2 physical-function score				
All patients	5.0	3.1	1.9 (0.9 to 3.0)	< 0.001
Patients with poor physical function at baseline†	7.6	3.8	3.8 (0.5 to 7.1)	0.02

3. Resultados.

- Reducción de peso: 14% con CagriSema vs mínima con placebo.
- ≥10% pérdida de peso: >65% de tratados.
- ≥20% pérdida de peso: >20% de tratados.
- Mejoría en TA, HbA1c y circunferencia abdominal.
- Seguridad: Efectos adversos → GI leves-moderados

4. Relevancia clínica

- Combinación GLP-1 + amilina: mecanismos complementarios (saciedad, control glucemia).
- Nuevo fármaco contra la obesidad (Pérdida de peso >20% en no DM -REDEFINE 1-).
- Mejores resultados que Semaglutida en monoterapia.
- Resultados prometedores en DM tipo 2. Mejorías cardiometabólicas.
- Perfil de seguridad favorable: Mínimos efectos adversos graves.

5. Limitaciones

- Falta de información a largo plazo.
- Falta estudios comparativos con fármacos más potentes (Tirzepatida).

Financiado por farmacéutica, caída 40% en bolsa de NovoNordisk.

450,00 425,00 400,00

325,00

250,00 225,00

Estudio REBOOT Betabloqueantes post IAM

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Beta-Blockers after Myocardial Infarction without Reduced Ejection Fraction

B. Ibanez, ^{1,3} R. Latini, ⁴ X. Rossello, ^{1,3,5,6} A. Dominguez-Rodriguez, ^{3,7,8} F. Fernández-Vazquez, ⁹ V. Pelizzoni, ¹⁰ P.L. Sánchez, ^{3,11} M. Anguita, ^{3,12} J.A. Barrabés, ^{3,13} S. Raposeiras-Roubín, ^{1,14} S. Pocock, ^{1,15} N. Escalera, ^{1,3} L. Staszewsky, ⁴ C.N. Pérez-García, ¹ P. Díez-Villanueva, ^{1,16} J.-A. Pérez-Rivera, ¹⁷ O. Prada-Delgado, ¹⁸ R. Owen, ^{1,15,19} G. Pizarro, ^{1,3,20,21} O. Caldes, ^{5,6} S. Gómez-Talavera, ^{1,3} J. Tuñón, ^{2,3} M. Bianco, ²² J. Zarauza, ²³ A. Vetrano, ²⁴ A. Campos, ²⁵ S. Martínez-Huertas, ²⁶ H. Bueno, ^{1,3,27} M. Puentes, ²⁸ G. Grigis, ²⁹ J.L. Bonilla-Palomas, ³⁰ E. Marco, ³¹ J.R. González-Juanatey, ^{3,32} R. Bangueses, ³³ C. González-Juanatey, ³⁴ A. García-Álvarez, ^{1,3,35} J. Ruiz-García, ^{36,37} A. Carrasquer, ³⁸ J.C. García-Rubira, ³⁹ D. Pascual-Figal, ^{1,3,40} C. Tomás-Querol, ⁴¹ J.A. San Román, ^{3,42} P. Baratta, ⁴³ J. Agüero, ^{3,44} R. Martín-Reyes, ⁴⁵ F. Colivicchi, ⁴⁶ R. Ortas-Nadal, ⁴⁷ P. Bazal, ⁴⁸ A. Cordero, ⁴⁹ A. Fernández-Ortiz, ^{1,3,50} P. Basso, ⁵¹ E. González, ⁵² F. Poletti, ⁵³ G. Bugani, ⁵⁴ M. Debiasio, ⁵⁵ D. Cosmi, ⁵⁶ A. Navazio, ⁵⁷ J. Bermejo, ^{3,58} G. Tortorella, ⁵⁹ M. Marini, ⁶⁰ J. Botas, ⁶¹ J.M. de la Torre-Hernández, ²³ F. Ottani, ⁶² and V. Fuster, ^{1,63} for the REBOOT-CNIC Investigators*

1. Introducción

- Betabloqueantes: Tratamiento estándar tras IAM desde los años 70.
- Últimos estudios relevantes: Finales 90s.
- Estudios recientes ya dudaban (beneficio sólo el primer año¹, no beneficio en FEVI >50%²).
- Actualmente: Reperfusión, estatinas, IECA/ARAII, iSGLT2.

¹Chi K-Y, Lee P-L, Chowdhury I, et al. Beta-blockers for secondary prevention following myocardial infarction in patients without reduced ejection fraction or heart failure: an updated meta-analysis. Eur J Prev Cardiol 2025; 32: 633-46.

²Yndigegn T, Lindahl B, Mars K, et al. Beta-blockers after myocardial infarction and preserved ejection fraction. N Engl J Med 2024; 390: 1372-81.

2. Diseño del estudio

- Ensayo clínico fase IV, pragmático, prospectivo, randomizado y con evaluación ciega.
- Participantes: 109 hospitales de Italia y España (CAULE)
- n= 8505, IAM (tipo 1 y tipo 2) y FEVI postIAM >40%.
- Betabloqueantes vs placebo 1:1
- Seguimiento de 4 años.
- Outcome primario: Mortalidad por causas cardiacas, reinfarto, hospitalización por IC.

Characteristic	Beta-Blocker (N = 4207)	No Beta-Blocker (N=4231)
Age — yr	61.4±11.2	61.3±11.1
Female sex — no. (%)	816 (19.4)	811 (19.2)
Left ventricular ejection fraction	010 (15.4)	011 (15.2)
Value — %	57.0±7.1	57.2±7.1
<50% — no. (%)	515 (12.2)	464 (11.0)
Country of enrollment — no. (%)	515 (12.2)	404 (11.0)
Spain	3260 (77.5)	3283 (77.6)
Italy	947 (22.5)	948 (22.4)
Medical history — no./total no. (%)	311 (22.3)	310 (22.1)
Arterial hypertension	2182/4200 (52.0)	2185/4214 (51.9)
Diabetes mellitus	901/4191 (21.5)	893/4200 (21.3)
Dyslipidemia	2158/4199 (51.4)	2166/4214 (51.4)
Current smoker	1851/4095 (45.2)	1824/4115 (44.3)
Previous myocardial infarction	408/4200 (9.7)	394/4218 (9.3)
Previous stroke	86/4203 (2.0)	67/4215 (1.6)
Chronic obstructive pulmonary disease	145/4204 (3.4)	133/4218 (3.2)
Previous atrial fibrillation	91/4205 (2.2)	102/4215 (2.4)
Details of index hospitalization — no./total no. (%)	31/4203 (2.2)	102/4215 (2.4)
Infarction type		
STEMI	2146/4207 (51.0)	2150/4231 (50.8)
NSTEMI	2061/4207 (49.0)	2081/4231 (49.2)
Multivessel disease	1073/4194 (25.6)	1104/4215 (26.2)
Type of revascularization	10/3/4194 (23.0)	1104/4213 (20.2)
None	207/4177 (5.0)	190/4190 (4.5)
Percutaneous coronary intervention	3906/4177 (93.5)	3925/4190 (93.7)
Coronary-artery bypass grafting	6/4177 (0.1)	10/4190 (0.2)
Complete revascularization achieved	3464/3935 (88.0)	3484/3940 (88.4)
Medication at discharge — no./total no. (%)	3404/3333 (88.0)	3404/3340 (00.4)
Type of beta-blocker		
Atenolol	26/4131 (0.6)	
Bisoprolol	3549/4131 (85.9)	
Carvedilol	128/4131 (3.1)	
Metoprolol	309/4131 (7.5)	
Nebivolol	114/4131 (2.8)	
Other	5/4131 (0.1)	
Aspirin	4136/4201 (98.5)	4165/4226 (98.6)
P2Y12 inhibitor	4120/4203 (98.0)	4129/4225 (97.7)
Angiotensin-converting–enzyme inhibitor or angiotensin-receptor blocker	3040/4193 (72.5)	3269/4223 (77.4)
Statin	4130/4202 (98.3)	4161/4224 (98.5)
Aldosterone-receptor antagonist	93/4193 (2.2)	84/4215 (2.0)
Oral anticoagulant	170/4198 (4.0)	164/4219 (3.9)
Ivabradine	20/4194 (0.5)	243/4221 (5.8)
Diuretic agent Calcium-channel blocker	366/4194 (8.7) 431/4194 (10.3)	410/4220 (9.7) 515/4218 (12.2)

3. Resultados

Table 2. Primary, Secondary, and Other Outcomes.					
Outcome	Beta-Blocker	No Beta-Blocker	Rate Difference (95% CI)	Hazard Ratio (95% CI)*	
no. of patients (event rate per 1000 patient-yr)					
Primary outcome					
Death from any cause, reinfarction, or hospi- talization for heart failure	316 (22.5)	307 (21.7)	0.84 (-2.63 to 4.32)	1.04 (0.89 to 1.22)†	
Secondary outcomes					
Death from any cause	161 (11.2)	153 (10.5)	0.66 (-1.75 to 3.07)	1.06 (0.85 to 1.33)	
Reinfarction	143 (10.2)	143 (10.1)	0.09 (-2.26 to 2.43)	1.01 (0.80 to 1.27)	
Hospitalization for heart failure	39 (2.7)	44 (3.0)	-0.32 (-1.56 to 0.92)	0.89 (0.58 to 1.38)	
Death from cardiac causes	65 (4.5)	57 (3.9)	0.60 (-0.90 to 2.10)	1.15 (0.81 to 1.64)	
Sustained ventricular tachycardia	3 (0.2)	2 (0.1)	0.07 (-0.23 to 0.38)	1.52 (0.25 to 9.08)	
Ventricular fibrillation	3 (0.2)	5 (0.3)	-0.14 (-0.52 to 0.25)	0.61 (0.14 to 2.53)	
Resuscitated cardiac arrest	4 (0.3)	4 (0.3)	0.00 (-0.38 to 0.39)	1.01 (0.25 to 4.05)	
Tertiary outcomes					
Death from cardiac causes, stroke, or myo- cardial infarction	235 (16.8)	216 (15.3)	1.51 (-1.45 to 4.47)	1.10 (0.91 to 1.32)	
Unplanned revascularization	170 (12.1)	171 (12.1)	0.02 (-2.55 to 2.59)	1.00 (0.81 to 1.24)	
Safety outcomes					
Hospitalization for symptomatic advanced atrioventricular block	7 (0.5)	6 (0.4)	0.07 (-0.42 to 0.56)	1.18 (0.40 to 3.50)	
Hospitalization for stroke	37 (2.6)	25 (1.7)	0.86 (-0.21 to 1.93)	1.50 (0.90 to 2.49)	

3. Resultados

- Outcome primario: 7,9% en grupo BB vs 8,3% en grupo no BB.
 - HR 0,96 (IC95%, 0,79-1,16; p=0,64).
- Mortalidad, reinfarto y reingreso por IC (por separado), resultados similares.
- Subgrupos:
 - FEVI 40-50% → tendencia favorable.
 - Mujeres: posible mayor riesgo de eventos primarios

Subgroup	Beta-Blocker No Beta-Blocker no. of patients with event /	Hazard Ratio (95% CI)
	total no. (event rate per 1000 patient-yr)	
	total no. (event rate per 1000 patient-yr)	
Overall	316/4207 (22.5) 307/4231 (21.7)	1.04 (0.89–1.22)
Sex		i
Male	233/3391 (20.6) 250/3420 (21.8)	0.94 (0.79–1.13)
Female	83/816 (30.4) 57/811 (21.0)	→ 1.45 (1.04–2.03)
Age		

4. Relevancia clínica

- No existe beneficio con betabloqueantes post IAM (FEVI >50%).
- Posible utilidad si FEVI 40-50%.
- En línea con estudios previos (REDUCE-AMI)
- Implica revisión de guías clínicas.
- Reducción de polifarmacia y efectos adversos innecesarios.

5. Cobertura mediática

- Publicado en NEJM y Lancet, presentado en ESC 2025.
- Amplia "cobertura científica" en medios generalistas

CAFÉ Y RIESGO CARDIOVASCULAR

European Heart Journal (2025) **46**, 749–759 European Society https://doi.org/10.1093/eurheartj/ehae871

CLINICAL RESEARCH

Epidemiology, prevention, and health care policies

Coffee drinking timing and mortality in US adults

Xuan Wang¹, Hao Ma¹, Qi Sun © ^{2,3}, Jun Li^{2,4}, Yoriko Heianza¹, Rob M. Van Dam⁵, Frank B. Hu^{2,3}, Eric Rimm^{2,3,4}, JoAnn E. Manson^{3,4,6}, and Lu Qi © ^{1,2,*}

1. Introducción

- El café es una de las bebidas más consumidas del mundo.
- Evidencia previa de beneficios moderados en mortalidad CV¹.
- La mayoría de estudios analizan la cantidad y el tipo de café.
- Objetivo: Analizar los patrones de consumo de café y el riesgo de mortalidad.

¹Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. *Circulation*. 2014;129(6):643-659.

2. Diseño del estudio

- Cohorte prospectiva, datos del NHANES (USA).
- > 40000 adultos, seguimiento de 10 años.
- Analiza el patrón de consumo:
 - Ninguno
 - Solo por la mañana (4am 12pm)
 - A lo largo del día
- No distinción del tipo de café.
- Outcome primario: Mortalidad total y CV.

Table 1 Characteristics of participants by patterns of coffee drinking timing in National Health and Nutrition Examination Survey

Characteristics	Non-drinkers	Morning type	All-day-type
N	19 593	14 643	6489
Age, years	38.5 ± 17.4	50.6 ± 16.5	51.2 ± 17.6
Female sex, %	9983 (51.0)	7755 (53.0)	3370 (51.9)
Race, %			
Non-Hispanic White	6806 (34.7)	6764 (46.2)	2862 (44.1)
Non-Hispanic Black	5910 (30.2)	2362 (16.1)	664 (10.2)
Mexican American	3698 (18.9)	3002 (20.5)	1386 (21.4)
Other Hispanic	1234 (6.3)	1410 (9.6)	857 (13.2)
Other race	1945 (9.9)	1105 (7.6)	720 (11.1)
Family income, ^a %			
Low	6444 (32.9)	3531 (24.1)	1812 (27.9)
Intermediate	6580 (33.6)	5146 (35.1)	2267 (34.9)
High	4896 (25.0)	4717 (32.2)	1883 (29.0)
Education levels, %			
Less than high school	4089 (20.9)	3850 (26.3)	1792 (27.6)
High school	4005 (20.4)	3294 (22.5)	1312 (20.2)
Some college or above	8618 (44.0)	7192 (49.1)	3187 (49.1)
Body mass index, kg/m ²	28.8 ± 7.4	28.7 ± 6.4	28.3 ± 6.1
Diabetes, %	2056 (10.5)	2208 (15.1)	1015 (15.6)
Hypertension, %	5752 (29.4)	6070 (41.5)	2553 (39.3)
High cholesterol, %	3846 (19.6)	4767 (32.6)	2194 (33.8)
Smoking status, %			
Never	11 379 (58.1)	7179 (49.0)	3227 (49.7)
Former	2627 (13.4)	3940 (26.9)	1750 (27.0)
Current	3336 (17.0)	3304 (22.6)	1362 (21.0)
Regular physical activity, %	7704 (39.3)	4966 (34.0)	2141 (33.0)

3. Resultados

Table 2 Association of coffee drinking timing with mortality in National Health and Nutrition Examination Survey

Model	Non-drinker	Morning type	All-day-type
All-cause mortality			
Events/total	1484/19 593	1872/14 643	939/6489
Multivariable-adjusted model ^a	1 (reference)	.88 (.81–.96)	.99 (.90–1.10)
Further adjusted for tea and caffeinated soda ^b	1 (reference)	.87 (.80–.95)	.98 (.88–1.09)
Further adjusted for short sleep and trouble sleeping ^c	1 (reference)	.84 (.74–.95)	.96 (.83–1.12)
CVD-specific mortality			
Events/total	458/19 593	536/14 643	274/6489
Multivariable-adjusted model ^a	1 (reference)	.81 (.70–.94)	.96 (.79–1.16)
Further adjusted for tea and caffeinated soda ^b	1 (reference)	.80 (.6993)	.95 (.78–1.15)
Further adjusted for short sleep and trouble sleeping ^c	1 (reference)	.69 (.55–.87)	.82 (.61–1.10)
Cancer-specific mortality			
Events/total	292/19 593	420/14 643	222/6489
Multivariable-adjusted model ^a	1 (reference)	.92 (.77-1.09)	1.05 (.84–1.29)
Further adjusted for tea and caffeinated soda ^b	1 (reference)	.91 (.77–1.08)	1.04 (.84–1.28)
Further adjusted for short sleep and trouble sleeping ^{cd}	1 (reference)	.97 (.75–1.25)	1.14 (.83–1.56)

3. Resultados

- Mortalidad total: ↓16% en consumidores solo matutinos (HR~0.84).
- Mortalidad CV: ↓ 31% (HR~0.69).
- Consumo durante todo el día, sin beneficio.
- Beneficio independiente de cantidad y tipo de café.
- Sin influencia en mortalidad por cáncer.

4. Mecanismos biológicos

- Respeto del ritmo circadiano, ↓ niveles de melatonina.
- Potente actividad antioxidante (polifenoles). Más actividad matutina.
- Mejoría de la función endotelial.
- Entorno menos aterogénico.

HIPÓTESIS

5. Fortalezas y limitaciones

Fortalezas:

- Cohorte grande y representativa (>40000)
- Seguimiento >10 años.

Limitaciones:

- Estudio observacional.
- Toma de datos mediante entrevistas.
- No se analizaron por patologías específicas (HTA, DM).
- No se diferencia por tipos de café.

6 Conclusiones

Consumo de café matutino: ↓16% mortalidad total y ↓31% mortalidad CV.

Efecto independiente de cantidad y tipo de café.

La hora de consumo importa tanto como la cantidad

de café.

