SÍNDROME DE RESISTENCIA A DIURÉTICOS

European Journal of Heart Failure (2019) **21**, 137–155 doi:10.1002/ejhf.1369

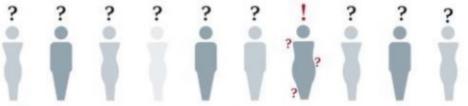
The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology

Wilfried Mullens^{1,2}*, Kevin Damman³, Veli-Pekka Harjola⁴, Alexandre Mebazaa⁵, Hans-Peter Brunner-La Rocca⁶, Pieter Martens^{1,2}, Jeffrey M. Testani⁷, W.H. Wilson Tang⁸, Francesco Orso⁹, Patrick Rossignol¹⁰, Marco Metra¹¹, Gerasimos Filippatos^{12,13}, Petar M. Seferovic¹⁴, Frank Ruschitzka¹⁵, and Andrew J. Coats¹⁶

INTRODUCCIÓN

La insuficiencia cardiaca es una de las enfermedades más prevalentes en el mundo y pese a que en los últimos años la supervivencia ha mejorado, las tasas de mortalidad absolutas se mantienen alrededor del 20% en el primer año y 50% a los cinco años posteriores al diagnóstico.

Insuficiencia cardíaca

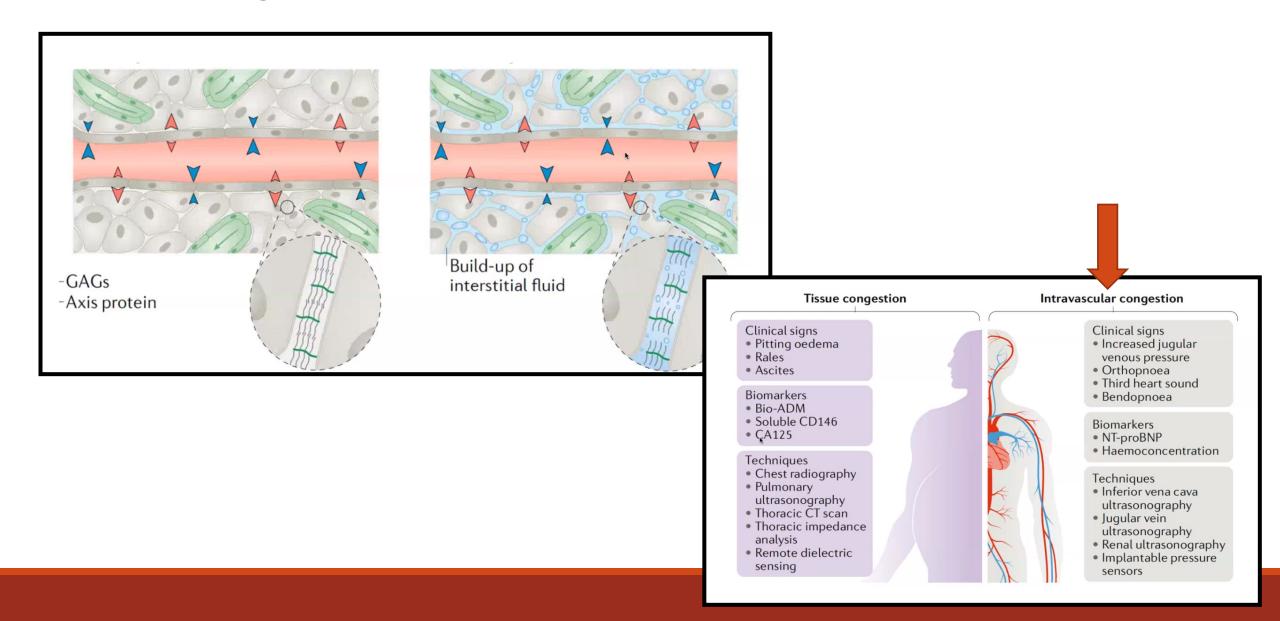

1 de cada 5

personas desarrollará insuficiencia cardíaca, una enfermedad en la que el corazón no puede bombear suficiente sangre a todo el organismo

Es la causa más frecuente de hospitalización en personas mayores de 65 años.

El 50% de las personas diagnosticadas con insuficiencia cardíaca morirá durante los cinco años siguientes

Menos de 1 de cada 5 identifican tres síntomas frecuentes, que incluyen dificultad respiratoria, tobillos hinchados, aumento de peso y dificultad de movimientos



La incidencia está aumentando por el deterioro del estilo de vida, el incremento de la supervivencia tras los ataques al corazón y el envejecimiento

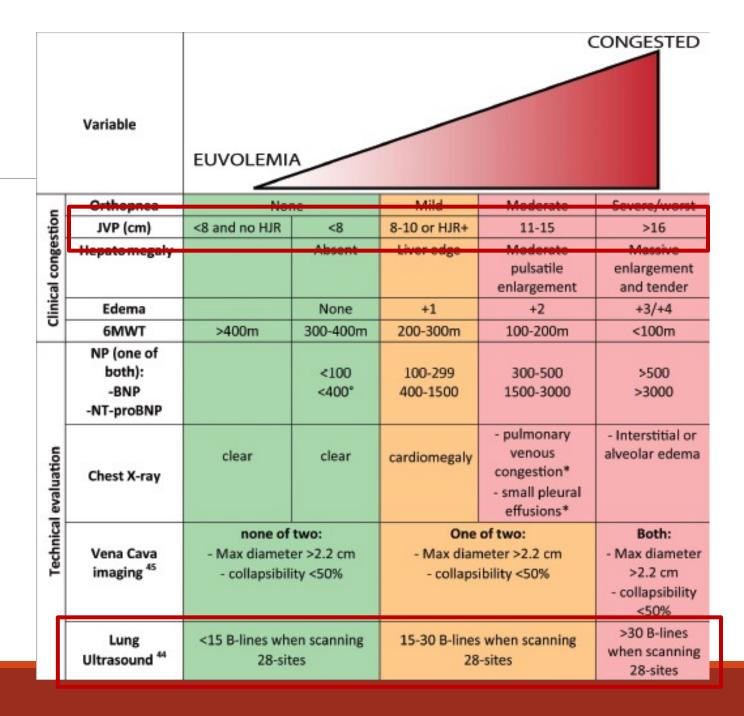
Asusta más el ictus (41%), el cáncer avanzado (43%) o los infartos (12%) que la insuficiencia cardíaca (4%), pese a ser más letal

Congestión intravascular vs tisular

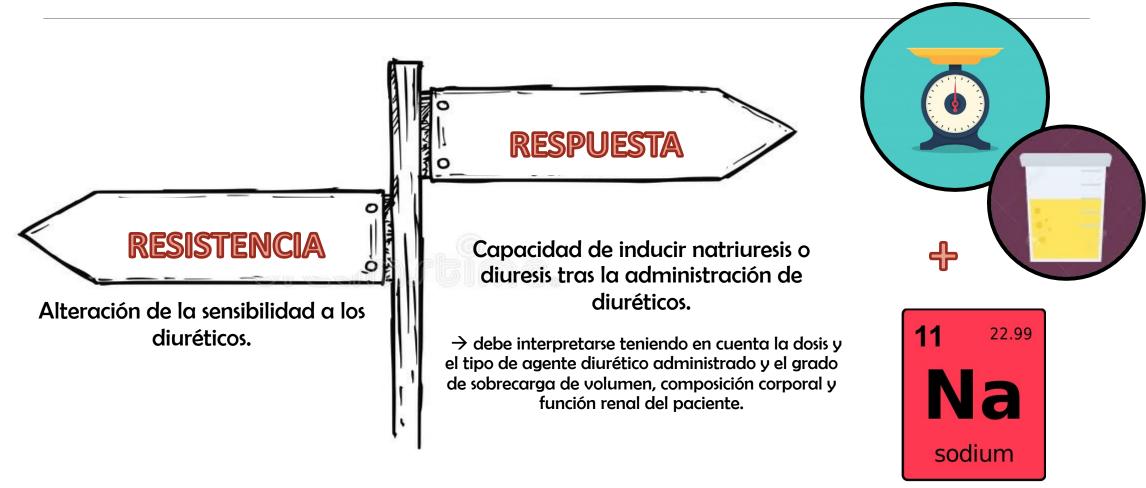
Este documento se centra en el uso de diuréticos en la insuficiencia cardiaca que cursa con congestión intravascular

- La evaluación de la congestión y la euvolemia clínica.
- 2. La evaluación de la respuesta/resistencia diurética.
- 3. Enfoque hacia estrategias diuréticas farmacológicas escalonadas.
- 4. Manejo de alteraciones electrolíticas comunes.

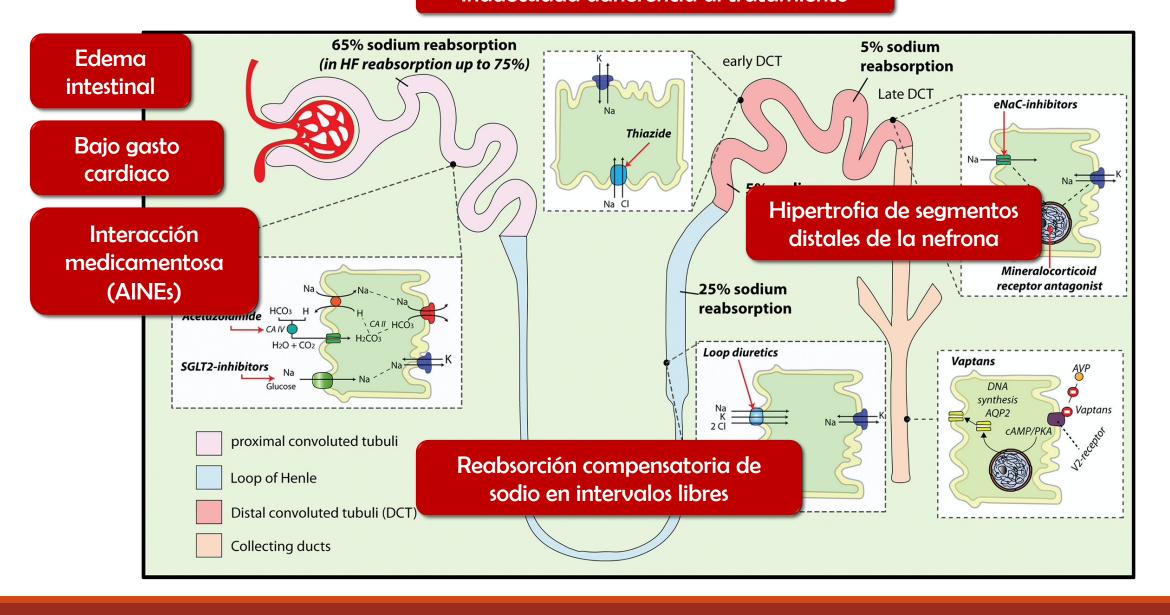
EVALUACIÓN DE LA CONGESTIÓN Y LA EUVOLEMIA


Muchos pacientes son dados de alta con congestión clínica residual

En el estudio de Evaluación de Estrategias de Optimización de Diuréticos (DOSE-AHF)

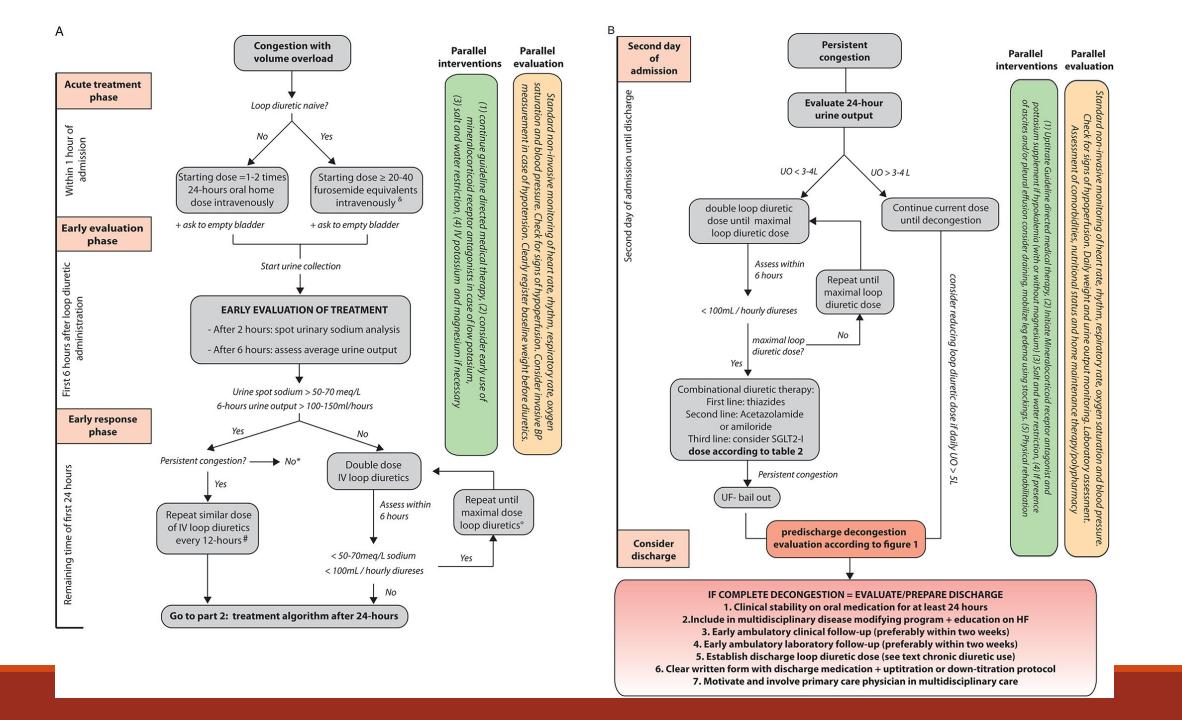

> sólo el 15% de los pacientes fueron evaluados como euvolémicos

después de la terapia descongestiva.



EVALUACIÓN DE LA RESPUESTA/RESISTENCIA DIURÉTICA

Inadecuada adherencia al tratamiento



ESTRATEGIAS DIURÉTICAS FARMACOLÓGICAS ESCALONADAS

La mayor parte del efecto diurético de los diuréticos de asa IV se produce dentro de las primeras 2h y vuelve a la excreción basal de sodio a las 6-8 h.

La evaluación temprana de la respuesta diurética permitirá la identificación de pacientes con una respuesta diurética deficiente, y con ello una **intensificación temprana** de la dosis de diurético de asa y/o el **uso combinado** de diuréticos con un modo de acción diferente.

^a Distal acting diuretics included thiazide-like duretics, MRA and amiloride.

MANEJO DE ALTERACIONES ELECTROLÍTICAS

	Hyponatraemia	Hypokalaemia	Hyperkalaemia
Definition	$Na^+ < 135 mEq/L$	K+ < 3.5 mEq/L	K+ > 5 mEq/L
Diagnostic tests	 P_{osm}: should be <285mOsm/L (else pseudo-hyponatraemia) 	 ABG: confirm on ABG, check pH status ECG: check potential abnormalities 	 ABG: confirm on ABG, check pH status ECG: check potential abnormalities
	 Physical examination: to differentiate between volume overload or volume depletion Urinary analysis: U_{osm} and U_{Na} 	 Physical examination: usually normal, however muscle weakness or paralysis present in severe cases 	 Lab: check renal function, exclude haemolysis as caus of pseudo-hyperkalaemia
Pathophysi ol ogy	 Dilution: impaired free water excretion. Clinical picture of volume overload with inappropriate high U_{csim} (≥ 100 mOsm/L). Typical in the setting of ADHF 	 Lab: check for Mg deficit Diuretic use results in hypokalaemia Predisposing factors in HF can play a role, for instance: cachexia with low K+ intake and 	Most likely due to combination of RAAS blocker agent and poor renal function with diminished renal potassium excretion capacity
	 Depletion: true body deficit of Na⁺. Typical in the setting of chronic excessive diuretic use (and strict Na⁺ intake). Clinical picture of volume depletion with low U_{csm} (< 100 mOsm/L) and U_{Na} (< 50 mEq/L) 	chronic hypomagnesaemia	
Treatment	 Dilution: temporarily stop distal acting diuretics^a, limit water intake, promote distal nephron flow (loop diuretics, hypertonic saline, acetazolamide/SGLT2 inhibitor) or vaptans, correction of K⁺ and Mg²⁺ deficiencies 	 Consider discontinuation of thiazide diuretics Upfront use of MRA during decongestion Increase dose of RAAS blocking agent IV substitution of K⁺ and Mg²⁺: peripheral or 	 Acute hyperkalaemia: if ECG abnormalities present then prevent arrhythmias by IV calcium. Intermediate strategies include: insulin/albuterol/sodium HCO₃ IV. Ultimately potassium must be removed from the body
	 Depletion: stop distal acting diuretics^a, calculate Na deficit and administer IV Na⁺ correction of K⁺ and Mg²⁺ deficiencies 	central depending on severity of K ⁺ deficit.	 with either diuretics, potassium binding resins, or RRT. Chronic hyperkalaemia: reduces dose RAAS blocker, increase loop diuretic, potassium binders

CONCLUSIONES

La estrategia diurética ideal está por llegar

Destacar el papel del sodio urinario para evaluar la idoneidad del tratamiento con diuréticos en la insuficiencia cardíaca aguda

Torasemida vs furosemida

TRANSFORM-HF: ToRsemide compArisoN With furoSemide FORManagement of Heart Failure (TRANSFORM-HF)

Gracions